Proposal Management

"How might we enhance the proposal management experience of sending, reviewing, updating and approving proposals"?

Spoiler alert: workflows

Background

My team is working on Proposal Management

Proposals

A business proposal is sent from a supplier to a potential
client for the purpose of winning a specific project. It is a
written (paper or electronic) document and it can either

be requested by the client or sent unsolicited.

The keyword here being document.

Informing stakeholders
of proposal changes

Stakeholders may wish to update a proposal,

'

anything from terms to the cost of provided

services or dates of deliverables

D
(\/

Notifications

It's important to be able to notify stakeholders
when that proposal document is updated.

Ensuring that updates to a
proposal document follow a
defined procedure

(organisation requirements, legal requirements,
etc.)

Any document generally goes through phases
such as:

= Being drafted
= Being reviewed

= Submitted to client

In some circumstances a document should not
be updated once it's been submitted to a client
until they have reviewed it.

Notifications, enforcement
of document requirements,
preventing edits outside of
key phases...

That could soon become complex and
Implementing these sorts of processes in
software can often lead to "accidental
complexity" and "technical debt".

A solution - workflows

"the sequence of industrial, administrative, or other
processes through which a piece of work passes from

initiation to completion."

Let's break it down a little, we need:

= To send out notifications when a proposal
document is updated
= Do we want every type of edit to sent a

notification or just key phases?

= Enforce a particular set of document
guidelines we might be following

= Prevent invalid edits and updates occurring
outside of specific phases in alignment with

the guidelines.

How to implement a
workflow?

Answer: Finite State Machines

A finite-state machine (FSM) or finite-state automaton
(FSA, plural: automata), finite automaton, or simply a
state machine, is a mathematical model of computation. It
is an abstract machine that can be in exactly one of a
finite number of states at any given time. The FSM can
change from one state to another in response to some
inputs; the change from one state to another is called a

transition

FSM'’s are a "universal" concept that applies
across multiple disciplines.

That sounds pretty scary.

Let's explain it in simple terms...

Simply explained... designing robust software

One of the many huge benefits of FSM's

Kent C. Dodds @» @kentcdodds - Jan 3, 2020
Statecharts are the future (and should probably be the present).
xstate.js.org

Q 29 T 179 Q o912 &y

Kent C. Dodds ™
@kentcdodds

Most of the bugs your users experienced in the last 24
hours would probably never have happened if you had
used a statecharts to model possible states and
transitions.

2:25 PM - Jan 3, 2020 - Twitter Web App

10 Retweets 3 Quote Tweets 123 Likes

A hypothetical proposal document workflow

Time for a demo!

Updotte, document

| Re_qu e_St e,d

An overview of the code

How this the diagram is implemented in code

machine.Configure(State.Review)

An overview of the code

How this the diagram is implemented in code

.Permit(Triggers.ChangedNeeded, State.ChangesRequested)

An overview of the code

How this the diagram is implemented in code

.Permit(Triggers.Submit, State.SubmittedToClient)

An overview of the code

How this the diagram is implemented in code

machine.Configure(State.Review)
.Permit(Triggers.ChangedNeeded, State.ChangesRequested)
.Permit(Triggers.Submit, Stat®.SubmittedToClient)

Keeping the domain design and code In sync

Keeping the domain experts/business analysts and the developers in sync via the power of finite state
machines

Developers can make changes in accordance with new requirements and then assert that the code matches

On the left is the diagram created by hand and on the right is the output of the finite state machine library

Updo\‘te document

D Submitted

to c[]e_n‘t ChangedNeeded / OnDraftEntryAsync

Accept
2 Draft L_’_,,._—-—— P

| entry / OnDraftEntryAsync
S exit / OnDraftExitAsync

Reject

ChangesRequested

ChangedNeeded
Review |

RestartReview

BeginReview

Change Declined

Requested

Submit Decline

Approve
-

SubmittedToClient

Auditing, event logs, integrations

R X) liichad hAawvazs A varAvrb€l Ava s de: A ariklh o Aarn ECNMN \A/a A ~AN/AF ~ £f+ha "Avira" hanafd
Now that we've established how a workflow Is designed with an FSM we can cover all of the "extra" benefi

= Every line of text in the screenshot can be plugged into some integration
= Right now as you've seen SMS is one such integration
= Everything can be logged, audited, and tracked over time
= Perfect for legal documents or simply finding out who updated the document and why

m Perfect for Event Driven Architecture - every update can be published to a queue ("event bus")

Blocking: Proposal is currently in "Draft". There are no valid exit transitions from this stage for trigger "Submit".

Blocking: Proposal is currently in "Draft". There are no valid exit transitions from this stage for trigger
"RestartReview".

Debug: The proposal has now left the draft stage

Informative: OnTran51t10ned Draft -> Review via BeglnRev1ew()

Debug: The proposal is now in the review stage

Blocking: Proposal is currently in "Review". There are no valid exit transitions from this stage for trigger

"BeginReview".

Debug: The proposal has now left the review stage

Informative: OnTransitioned: Review —> SubmittedToClient via Submit()

Debug: The proposal is now in the submitted to client stage. Great news!

Debug: The proposal has now left the submitted to client stage

Informative: OnTransitioned: SubmittedToClient -> Approved via Approve()

Blocking: The proposal is now in the approved stage. Congratulations, the client approved the proposal! The document

Integration examples

Yy

\«6 - in
= =t :
—) Zapier
1 salesforce

>

e &

Improved maintainability and testing

We can go from code that looks like this that grows in complexity over time due to all the complex
conditionals...

if (document.IsInDraft)
{

if (!'document.HasBeenReviewedByLegal)

{

}
else if (document.IsSentToCustomer & document.Approved || document.Rejected)

{

...to code that looks like this:

private async Task OnSubmittedToClientEnterAsync()
{

await notificationService.SendUpdateAsync(Priority.Verbose, "The proposal is now in the submitted to client stage.

Conclusion

-

= Explained a part of what Proposal =
Management involves v
| devised a system that will allow us to =
model complex document workflows that e T
can be changed easily when required | = - ‘_
Described how we can use integrations to |
inform stakeholders when changes have :
been made (SMS being one way)
Gave examples of how we can use this A
across [company project name] via Event 3 ¢ géﬁ? ;g;&;&
Driven Architecture - % e =———1

T~ ~vicFime~ DircarmAaceeal N~
ne existng

A [l e i = e [PSR [S g = sese =i
A7l Y N\FA ¢ vinAl IR A e A AR A ~ S
d OrkK 1IN progaress and pased on outsourcead

CLODITIET)
CLUUNITICT T IU

= The UX and Ul does not yet fully match
[company project name]

= A requirement was to make it look unique

® | researched what other proposal software
looks like in order to understand real world

USE CasSes.:.

[slides showing internal product removed]

v,

) , _,;_;“.," —
g\ &7/ . E
P VAN
. } \ \
| N\
72944y bl

| .‘\)1/@1 Q?/b*mﬁﬁ

- - ‘;‘.vu'*
y 3

ﬁfdew‘

2. FXilne

o _
— —
' =y
- v ‘ =
— 4
.’/ﬁ;_ ? »
—
v

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

