
Infrastructure 
as Code

With CDK for AWSLloyd Atkinson



Declarative & 
Consistent 
Environments 
via Code

Infrastructure as Code (IaC) is the managing and 

provisioning of infrastructure through code instead 

of through manual processes. With IaC, configuration 

files are created that contain your infrastructure 

specifications, which makes it easier to edit and 

distribute configurations.

Infrastructure as code (IaC) uses DevOps methodology 

and versioning with a descriptive model to define 

and deploy infrastructure, such as networks, virtual 

machines, load balancers, and connection topologies. 

Just as the same source code always generates the 

same binary, an IaC model generates the same 

environment every time it deploys.



The problems 
with manual 
infrastructure 
approaches

• Human error. It’s easy to create 
infrastructure with any method; but it’s not 
easy to consistently produce the same 
result when running scripts ad-hoc, “one-
off” deployments, and natural changes 
over time.

• Lack of consistency. Multiple tools, scripts, 
tools, and methodologies require more 
time spend on ensuring correctness and 
consistency.

• Scaling becomes too hard and has limited 
reproducibility.

• Slower feedback loop. Deployment 
becomes slower, feedback becomes 
slower, development becomes slower.



Automated, 
declarative, 
maintainable 
infrastructure 
as code

• Infrastructure should not be at risk of 

becoming fragile, resistant to change, or 

practically impossible to redeploy

• Infrastructure should be able to be 

version controlled, expressed in written 

language form, able to be shared, 

changed, and updated

• Infrastructure should be able to be 

created and destroyed in minutes – not 

months

• Infrastructure should be declared as 

code and anyone that needs should be 

able to make infrastructure changes and 

have it deployed automatically



Popular IaC 
solutions

• In general terms there are two broad 

categories of IaC: imperative and 

declarative.

• Imperative IaC is using existing 

languages and frameworks to create 

infrastructure step by step by indicating 

how the infrastructure should exist

• Declarative IaC is using schema-based 

Domain Specific Languages (DSLs) to 

indicate what infrastructure must exist



Popular IaC 
solutions

Popular IaC tools have different design 

philosophies; imperative vs declarative, 

DSLs vs existing language, cloud agnostic vs 

cloud specific, stateful vs stateless

Conventions Declarative DSL Cloud Agnostic Stateless

Nix/NixOS ✅ ✅ ✅ ✅ ✅

Terraform ✅ ✅ ✅ ✅ ❌

AWS 
Cloudformation

✅ ✅ ✅ ❌ ✅

Azure ARM/Bicep ✅ ✅ ✅ ❌ ✅

AWS CDK ✅ ❌ ❌ ❌ ❌

Pulumi ✅ ❌ ❌ ❌ ❌

PowerShell, Bash, 
Ansible, Chef, etc

❌/🤔 ❌ ❌ ❌ ❌



IaC maturity 
rank
Rank Solution

A

Automated CI/CD, fast feedback loops, declarative infrastructure as code, 
unique environments can be rapidly created with PRs in source control, 
frequent and low ceremony releases, multiple releases daily if desired, unit 
testing of IaC

B
Automated CI, some manual processes, releases have a degree of ceremony, 
infrequent releases, some deployment scripts

C
Deployments involve SSH or RDP with servers and manually deploying files, 
“big bang” releases every months or quarters, slow feedback loop

D
No automation at all, adoption of infrastructure as code requires fully 
rearchitecting the stack, configuration is not in source control, requires 
constant usage of GUIs, lack of understanding of how the platform operates



AWS Cloud 
Developer Kit 
(CDK)

• We’ll be using CDK for this project

• We should use existing CDK based 

projects in the D&G GitHub as a 

reference to familiarises ourselves with 

existing conventions and practices

• Following existing usage in other projects 

in our GitHub, we will be using 

TypeScript with the CDK library



CDK Example:
Lambda Function 
processing SQS 
messages



CDK 
Constructs 
and Stacks

• Not native AWS terminology, it is CDK 
specific terminology

• At a high level, constructs are types 
available in the CDK library for use by 
developers

• Lambda, S3 Bucket, API Gateway are 
examples of constructs

• Stacks are written by developers to define 
their infrastructure needs

• In our project, some examples of stacks 
could be:

• FrontendStack – the React SPA

• BackendStack – the .NET Lambdas

• ConfigurationStack – the database for our 
various portals and their products

• DashboardStack – the database and 
dashboard for the team to see how many 
plans are sold daily, how many errors occur, 
application performance, etc

The unit of deployment in the AWS CDK is called a stack.
All AWS resources defined within the scope of a stack,
either directly or indirectly, are provisioned as a single unit.

AWS Documentation



IaC & CDK 
Best Practices

• Follow patterns we, as developers, hopefully 
already follow; modularity, reusability, testing

• AWS Docs provide examples of unit testing CDK

• Ensure appropriate secrets management

• Use IaC to its full capability and don’t use 
environment variables as that is now a 
redundant step

• Do not be tempted to make “one off” changes 
to infrastructure through a GUI – if a change is 
needed then refactor the CDK and deploy it

• Implement the AWS Well-Architected guidelines 
and documentation

• Separate stateless and stateful stacks

• Have a stack containing databases so that you are 
free to redeploy your stack containing stateless 
microservices as often as you like without impact 
on your database stacks



Workflow 
combining IaC 
and CI/CD



Summary
• When planning for new or existing 

infrastructure always create an 
architecture diagram

• Try out changes to infrastructure by 
creating a PR and GitHub Actions will 
create a unique environment for you – 
don’t make “one off” changes in AWS UI

• We are using CDK for our IaC needs

• CDK has several best practices 
documented

• CDK is comprised of stacks, constructs, 
and many other types

• IaC will allow us to be more agile with 
tighter feedback loops and faster 
deployments


	Slide 1: Infrastructure as Code
	Slide 2: Declarative & Consistent Environments via Code
	Slide 3: The problems with manual infrastructure approaches
	Slide 4: Automated, declarative, maintainable infrastructure as code
	Slide 5: Popular IaC solutions
	Slide 6: Popular IaC solutions
	Slide 7: IaC maturity rank
	Slide 8: AWS Cloud Developer Kit (CDK)
	Slide 9: CDK Example: Lambda Function processing SQS messages
	Slide 10: CDK Constructs and Stacks
	Slide 11: IaC & CDK Best Practices
	Slide 12: Workflow combining IaC and CI/CD
	Slide 13: Summary

